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Abstract. This paper considers the effect of complex polynomial maps on circles of various
radii. Several phenomena are examined including cusps and windings. The results obtained
for polynomial images of circles are then used to sketch an analytic proof of the Fundamental
Theorem of Algebra. We go on to consider properties of curvature and their transformation
under polynomials. We are able to show that the integral of curvature for an arbitrary
closed curve is an integer multiple of 2π. We conclude by considering how this integral of
curvature transforms under complex polynomials.

1. Introduction

This paper examines the images of circles in the complex plane under a complex polyno-
mial. Limiting behavior for circles of small and large radii are analyzed. In the transition
between these two domains, the development of cusps, windings and local loops are observed.
The roots of the complex polynomial map coincide with where the polynomial image touches
the origin. The limiting behavior then suggests a proof technique for the Fundamental The-
orem of Algebra, which states that every non-constant complex polynomial has a root in
C.

In order to make some of the intermediary behavior more precise, we introduce the winding
number, curvature, and other notions from complex analysis and differential geometry. These
concepts are used to prove that the total curvature of a general closed curve is always an
integer multiple of 2π. Finally, we discuss the transformation of total curvature under a
general class of complex mappings and its relation to the roots of the derivative.

Section 2 outlines properties of polynomial images of circles. This portion of the paper
discusses the cusps and windings that occur as circles of larger radii are used. Section 3
introduces concepts from complex analysis, including the definition of a winding number,
the General Cauchy Formula, and the Argument Principle. Then, in Section 4, we state the
Fundamental Theorem of Algebra and sketch a proof for it motivated by polynomial images
of circles. Finally, we conclude the paper with Section 5 where we introduce the notion
of curvature, prove that the integral of the curvature over an arbitrary closed curve is an
integer multiple of 2π, and show how the integral of curvature transforms under complex
polynomials.

2. Phenomenology of p(CR)

Consider the images of the circles CR (where R denotes the radius) under a polynomial
mapping p(z) = anz

n + · · · + a0. In this section, we describe various phenomena that we
observed in the curves p(CR) when varying R. Later sections will formalize some of these
observations.
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(a) R = .1 (b) R = .4 (c) R = .5

(d) R = .9 (e) R = |1
3
(−i +

√
−4 − 3i)| ≈ 1.07 (f) R = 1.5

(g) R = 3 (h) R = 10 (i) R = 30

Figure 1: Phenomenology of p(CR) for p(z) = z3 + iz2 + (1 + i)z − (2 + 2i)
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We begin with the complex polynomial p(z) = z3 + iz2 + (1 + i)z − (2 + 2i). To illustrate
the behavior of p, Figure 1 gives the curves p(CR) for varying R. We observe the following
phenomena:

(1) The constant term of the polynomial, a0 = 2 + 2i, which is indicated in each figure
by a dot, lies in the interior of each of the curves.

(2) The linear term of the polynomial, a1z + a0, mostly determines the value of the
polynomial for small R and the highest order term of the polynomial, anz

n, mostly
determines the value of the polynomial for large R. This change can be seen as R
increases from .1 in Figure 1a to 30 in Figure 1i.

(3) Cusps form as the radius of the curve increases. Figure 1b shows the beginning of a
concave deformation in the curve. The curve is still smooth, but heading toward a
cusp. Figure 1c shows the curve after this cusp has passed through. Figure 1d, Fig-
ure 1e and Figure 1f show another instance of a cusp developing, but here, Figure 1e
shows the exact radius of R where the cusp has formed.

(4) The image curve winds around a0 once for very small radii and n times for very large
radii. As the radius of the circle increases, cusps form and then turn into local loops.
These local loops encompass a0 for sufficiently large R, so each cusp that develops
ends up adding an additional winding around a0. This can be seen as the radius
increases from 1.5 in Figure 1f to 10 in Figure 1h. The small loop that developed
from the cusp of Figure 1e passes through the point a0 and thus adds one to the
number of times the curve winds around a0. This suggests that each cusp that forms
as the radius is increased adds one to the total winding number of the curve around
a0 for large R. Thus the number of windings about a0 is one greater than the number
of cusps observed as we transition from circles of small radii to circles of large radii.

These phenomena will be explored and explained in the next two sections.

3. Basic Complex Analysis

In this section we state necessary results from complex analysis to formalize the observa-
tions of Section 2. For the following discussion, see ([3] p.209-210).

A complex function f(x+ iy) = u(x, y)+ iv(x, y) can be thought of as a function from R2

to itself. The derivative of f(x, y) = (u(x, y), v(x, y)) at a point p, given by

(3.1) Df(p) =

(

∂xu ∂yu
∂xv ∂yv

)

provides a linear approximation to f at p and so must the complex derivative. There are
constraints on the derivative (3.1) known as the Cauchy-Riemann equations. These are the
coupled differential equations

∂xu = ∂yv

∂xv = −∂yu.

We thus make the following definition:

Definition 3.2. A complex function f : C → C is holomorphic or complex differen-

tiable on an open set U ⊆ C if it satisfies the Cauchy-Riemann equations and if f ′(z0) =

limz→z0

f(z)−f(z0)
z−z0

exists for all z0 ∈ U .
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If a function that is complex differentiable is viewed as a map from R2 → R2, every
partial derivative exists and is continuous. Thus, in contrast to R2 differentiable functions,
a complex differentiable function is immediately smooth.

In Section 2, we noted the development of cusps as we varied R for p(CR). We can now
define cusps as follows:

Definition 3.3. A cusp is a critical value of a holomorphic function f : C → C, i.e. if z0 is
a critical point, then the cusp is f(z0).

Remark 3.4. A singular point for a complex values function is just a point z0 = x0 + iy0 ∈ C,
where f ′(z0) = 0. If we treat f as map from R2 to itself, and put p = (x0, y0), then
f ′(z0) = 0 corresponds to (∂xf(p), ∂yf(p)) = 0. This corresponds precisely to the derivative
in Equation (3.1) becoming singular as a linear map at the point p. Calculating at the point
p, ∂xf = ∂xu + i∂xv = 0 ⇒ ∂xu = −i∂xv and ∂yf = ∂yu + i∂yv = 0 ⇒ ∂yu = −i∂yv. Thus,
detDf(p) = ∂xu∂yv − ∂xv∂yu = ∂xu∂yv − (i∂xu)(−i∂yv) = 0.

It is not clear from this definition how singular points of the derivative correspond to our
geometric intuition of a cusp. The following definition pins down one aspect of cusps.

Definition 3.5. A conformal map is a function which preserves angles.

Claim 3.6. A holomorphic function is conformal at any point where it has non-zero deriv-
ative.

Remark 3.7. Suppose f is holomorphic and f ′(z0) = 0. By Taylor’s Theorem, f(z + z0) ≈
f(z0) + zf ′(z0) + z2 f ′′(z0)

2
+ · · · . If z0 is a simple zero of the derivative, then f ′′(z0) 6= 0 and

f(z+z0) ≈ z2. More generally, if z0 is a root of the derivative of order n, then f(z+z0) ≈ zn+1.
Thus the order of a critical point of f describes the local behavior of f .

We can now use Claim 3.7 to describe our geometric intuition of what cusps look like.

Remark 3.8. At every point on the curve, the tangent vector and the normal vector are
necessarily at right angles. Polynomial mappings are conformal whenever the curve is not
touching a critical point by Claim 3.6, so the angle between the tangent vector and the normal
vector is preserved in these cases. However, if z0 is a simple critical point, f(z+z0) ≈ z2 and
the angle between the tangent and normal vectors doubles, reflecting the observed cuspidal
structure. Similarly, if z0 is an order two critical point, the right angle between the normal
and tangent vector becomes a 3 × 90◦ = 270◦ angle, and so on.

Section 5 describes more features of cusps. In Section 2, local loops or windings were
observed. In order to formalize this notion we must use the following formula from complex
analysis.

Theorem 3.9 (General Cauchy Formula). ([3] p.430) If f(z) is holomorphic on and inside
an arbitrary loop γ, then

1

2πi

∫

γ

f(z)

z − p
dz = ν[γ, p]f(p).

ν[γ, p] is the winding number of a curve about a point. By setting f(z) = 1, we can
provide a formula for the winding number.
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Definition 3.10. The winding number of a complex curve γ(t) about a point p ∈ C − γ
is defined as the integer value ν[γ, p] = 1

2πi

∫

γ
dz

z−p
.

We are now able to restate a key result from complex analysis known as the Argument
Principle.

Theorem 3.11 (The Argument Principle). If f(z) is analytic inside and on a simple loop
γ and N is the number of pre-images of p under f inside γ, then N = ν[f(γ), p].

Thus the phenomenon of winding about a point noted in Section 2 is captured precisely
in terms of the number of pre-images of that point in the interior of a curve. For certain
curves we may not care which point is being wound around, but we might care about the
more global feature of when a local loop develops in the curve. In Section 5, we will capture
this notion of a local loop formally by extending the local notion of curvature to a global
feature of total curvature.

4. The Fundamental Theorem of Algebra

Section 2 mentioned some observed properties of the polynomial images of circles and this
section applies these observations to sketch a proof the Fundamental Theorem of Algebra,
which we now state.

Theorem 4.1 (The Fundamental Theorem of Algebra). Every non-constant, single-variable
polynomial with complex coefficients has at least one complex root.

Consider the curves CR, circles centered around the origin with radius R, and the com-
plex polynomial p. The polynomial p is continuous, so varying R continuously deforms the
image curve p(CR). By beginning with a radius R0 such that p(CR0

) does not wind around
the origin, and increasing to radius R1 such that p(CR1

) does wind around the origin, the
continuity of this deformation requires that there is some intermediate r such that the curve
p(Cr) intersects the origin. The polynomial p must have a root somewhere on this curve Cr.

To explore the details of this proof, we begin by demonstrating that there is some circle
with positive radius R0 small enough such that p(CR0

) does not wind around the origin. As
mentioned in previous sections, the images of circles p(CR) wind around the point p(0) = a0,
the constant term of p. Thus, for a0 6= 0 we can show that p(CR0

) does not wind around the
origin by bounding the distance |p(z) − a0|. This is formalized in the following lemma.

Lemma 4.2. Let p(z) =
∑n

i=0 aiz
i be a complex polynomial of degree n. There exists a

positive R0 ∈ R, such that for |z| = R0, |p(z) − a0| ≤ 1
2
|a0| and thus p(CR0

) does not wind
around the origin if a0 6= 0.

Proof. The idea is to find a small enough R0 to bound the non-constant terms. Specifically,
take R0 = 1

2(1+
Pn

i=0
|ai|)

min{1, |a0|} < 1 and an arbitrary z such that |z| = R0. Then

R0 ≥ Ri
0 = |z|i for i ≥ 1. Consequently,

|p(z) − a0| =

∣

∣

∣

∣

∣

n
∑

i=1

aiz
i

∣

∣

∣

∣

∣

≤
n

∑

i=1

|aiz
i| =

n
∑

i=1

|ai||zi| ≤
n

∑

i=1

|ai|R0 <
1

2
|a0|

As this result holds for arbitrary z such that |z| = R0, the first part of the claim follows.
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Suppose a0 6= 0. To show that p(CR0
) does not wind around the origin, we only need to

notice that p(CR0
) is contained in the closed ball of radius 1

2
|a0| around a0, and this ball

does not contain the origin for a0 6= 0. �

The previous lemma proves the existence of the desired R0. To give the R1 so that p(CR1
)

winds around the origin, we use a similar argument that relies on the dominance of the
largest degree term instead of the dominance of the constant term. This argument is given
in the next lemma.

Lemma 4.3. Let p(z) =
∑n

i=0 aiz
i be a non-constant complex polynomial of degree n. There

exists an R1 ∈ R such that |p(z)−zn| ≤ 1
2
Rn

1 for all complex z where |z| = R1. Thus, p(CR1
)

winds around the origin.

Proof. Note that an 6= 0 and n ≥ 1.
The idea is to find an R1 such that the lower order terms in p(z) are small relative to

zn. We can factor out the zn term to get |p(z) − zn| = |zn| ·
∣

∣

∑n−1
i=0

ai

zn−i

∣

∣. The claim will be

proven by bounding |
∑n−1

i=0
ai

zn−i |. This is achieved by picking a large enough R1, specifically,
R1 = max{1, 2n(max0≤i≤n |ai|)} ≥ 1.

Take an arbitrary z such that |z| = R1. Then |z|n−i = Rn−i
1 ≥ R1. Using that R1 ≥ 2n|ai|

for any i shows
∣

∣

∣

ai

zn−i

∣

∣

∣
=

|ai|
|z|n−i

≤ |ai|
R1

≤ 1

2n
and consequently by the triangle inequality,

∣

∣

∣

∣

∣

n−1
∑

i=0

ai

zn−i

∣

∣

∣

∣

∣

≤
n−1
∑

i=0

∣

∣

∣

ai

zn−i

∣

∣

∣
≤

n−1
∑

i=0

1

2n
=

1

2

This bounds the lower order terms. By multiplying through by zn, we get a statement
about |p(z) − zn|.

|p(z) − zn| =

∣

∣

∣

∣

∣

n−1
∑

i=0

aiz
i

∣

∣

∣

∣

∣

= |zn| ·
∣

∣

∣

∣

∣

n−1
∑

i=0

ai

zn−i

∣

∣

∣

∣

∣

≤ 1

2
|zn| =

1

2
Rn

1

As this result holds for arbitrary z such that |z| = R1, the claim follows. �

Remark 4.4. To see that p(CR1
) winds around the origin, we use a “dog-walking” type

argument. The idea of this argument is to notice than when a dog-owner walks around a
tree and the dog is on a leash with length strictly bounded by the distance to the tree, then
the dog must also walk around the tree as many times as the owner. zn “walks” around the
origin n times and “walks the dog” of p(z) along with it with leash length |p(z) − zn|. As
|p(z) − zn| ≤ 1

2
Rn

1 and |zn| = Rn
1 , then the “dog” cannot reach the tree so it must be that

p(z) “walks” around, and thus winds around, the origin.

With the existence of both R0 and R1, we now give a sketch of a proof of the Fundamental
Theorem of Algebra.

Proof sketch of the Fundamental Theorem of Algebra. There are two cases.
Case: a0 = 0: Then p(0) = 0 and 0 is a root.
Case: a0 6= 0: Lemma 4.2 gives a positive R0 such that p(CR0

) does not wind around the
origin and Lemma 4.3 gives an R1 such that p(CR1

) does wind around the origin.
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As p is a polynomial it is continuous in z as a complex variable and also as a function
over R2. The function Reiθ is continuous in R and θ. Composing these continuous functions
shows that the image curve p(CR) is continuous in some sense as a function of R. Thus,
when taking the curves p(CR) for R ∈ [R0, R2] the curve p(CR0

) is continuously deformed
into p(CR1

). As p(CR0
) does not wind around the origin but p(CR1

) does, it must be that
there is some r ∈ [R0, R1] such that p(Cr) intersects the origin.

That p(Cr) intersects the origin means that there is some φ ∈ [0, 2π] such that p(reiφ) = 0.
Then, reiφ is a root of p which establishes the theorem. �

The proof is incomplete as the loose idea of continuity of curves in the deformation from
p(CR0

) to p(CR1
) is not formal. This deformation can be seen as a version of the Intermediate

Value Theorem for curves in R2, but this is by no means a formal proof. While we were not
able to formalize this idea, the intuition is clear.

5. Curvature

Now that we have considered some of the more general behavior of polynomial images of
circles, we would like to determine how the observed cusps and local loops effect curvature.

Definition 5.1. A continuously differentiable (i.e. C1) curve α(t) is regular if for all t
α′(t) 6= 0.

Definition 5.2. Let α : I → R2 ∼= C be a regular C2 plane curve α(t) = (x(t), y(t)). Then

the curvature at a point x,y is defined by κ = x′y′′−y′x′′

(x′2+y′2)3/2
.

The curvature of a non-regular curve is undefined for critical points. We will assume, for
convenience, that all the curves are C2. We now introduce the notion of total curvature.

Definition 5.3. The total curvature of a smooth plane curve γ is K(γ) :=
∫

γ
κds.

Example 5.4. Suppose α(t) = Re2πit ∼= R(cos 2πt, sin 2πt), t ∈ [0, 1] is a circle with ra-
dius R. Then α′(t) = 2πiRe2πit ∼= 2πR(− sin 2πt, cos 2πt) and α′′(t) = −4π2Re2πit ∼=
−4π2R(cos 2πt, sin 2πt). Applying Definition 5.2 we calculate

κ =
(−2πR sin 2πt)(−4π2R sin 2πt) − (−4π2R cos 2πt)(2πR cos 2πt)

[(−2πR sin 2πt)2 + (2πR cos 2πt)2]3/2

=
8π3R2

(2πR)3

=
1

R

Applying Definition 5.3, we see that K(α) =
∫

α
κds =

∫ 1

0
1
R

√

x′2 + y′2dt =
∫ 1

0
2πR
R

dt = 2π.

Despite a potential dependency on the radius of the circle, the total curvature of any
positively oriented circle is a constant 2π. We would like to see what other curves have such
well-behaved total curvatures and just how much we can change a curve without effecting
its total curvature.

Definition 5.5. Suppose α(t) = (x(t), y(t)) is a regular closed plane curve and α′(t) =
(x′(t), y′(t)) is the tangent vector to α at t, after translation. The integer number I of (signed)
complete revolutions that the tangent vector makes around the origin is the rotation index

of α [2].
7



Note that I can be negative if the curve is negatively oriented and the tangent vector
rotates around the origin in a clockwise direction. Consequently, a tangent vector who
rotates once positively around the origin and once negatively as rotation index 1 − 1 = 0.
The infinity symbol is a good example of this possibility.

Claim 5.6. Suppose α is a closed plane curve with rotation index I. Then the total curvature
K(α) = 2πI.

Proof. The following argument only provides heuristic evidence for the claim. Locally we

may define the angle that α′ makes with the x-axis by θ(t) = tan−1( y′(t)
x′(t)

). We can then write

locally the tangent vector as a function of θ so α′(t) = (x′(t), y′(t)) = (cos θ(t), sin θ(t)).
Differentiating, we find that

θ′ = [tan−1 y′

x′
]′ =

x′y′′ − y′x′′

(x′)2

1

1 + (y′/x′)2
=

x′y′′ − y′x′′

x′2 + y′2
.

Our assumption that α(s) = (x(s), y(s)) is C2 implies that θ′ is continuous and thus inte-
grable. In particular,

∫

α

κds =

∫ 1

0

x′y′′ − y′x′′

(x′2 + y′2)3/2
ds

=

∫ 1

0

x′y′′ − y′x′′

(x′2 + y′2)3/2

√

x′2 + y′2dt

=

∫ 1

0

x′y′′ − y′x′′

x′2 + y′2
dt

=

∫ 1

0

θ′dt

= θ(1) − θ(0)

Intuitively, θ(1) − θ(0) captures the number of times the tangent vector rotates around the
origin. By Definition 5.5, θ(1) − θ(0) = 2πI. �

If we identify R2 ∼= C and appeal to complex analysis terminology, we recognize the
rotation index of the tangent vector is the winding number of the derivative. We now have an
intuitive reason to believe that for smooth closed curves, the total curvature is just 2π times
the winding number of the derivative about the origin. This is captured in the following
theorem.

Theorem 5.7. Let γ(t) = x(t)+ iy(t) be a closed smooth complex curve. The total curvature
of γ about the origin is 2πν[γ′, 0].

Proof. The winding number of γ′ = x′(t) + iy′(t) around the origin is given by 1
2πi

∫

γ′

dz
z
,

which must be an integer by Theorem 3.9, the General Cauchy Formula. We thus calculate
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that:

1

2πi

∫

γ′

dz

z
=

1

2πi

∫ 1

0

γ′′(t)

γ′(t)
dt

=
1

2πi

∫ 1

0

x′′ + iy′′

x′ + iy′

x′ − iy′

x′ − iy′
dt

=
1

2πi

∫ 1

0

x′′x′ − iy′x′′ + iy′′x′ + y′′y′

x′2 + y′2
dt

=
1

2πi

∫ 1

0

x′′x′ + y′′y′

x′2 + y′2
dt +

1

2π

∫ 1

0

y′′x′ − y′x′′

x′2 + y′2
dt

=
1

2π

∫ 1

0

κds.

In the next to last line, we know the left integral must be zero because the integral is complex
and the winding number is real (more specifically, an integer). The last line thus follows
because the right integral is exactly

∫

θ′dt =
∫

κds. �

Corollary 5.8. The total curvature K of a closed smooth path is an integer multiple of 2π.

Proof. Suppose the winding number of the derivative of a curve is n ∈ Z. By Theorem 5.7
n = 1

2π

∫

κds and
∫

κds = 2πn and we obtain the desired result. �

We can now consider more general mappings of circles and their effect on curvature.

Lemma 5.9. Suppose f : C → C is a holomorphic function and γ is a simple closed curve,
then ν[[f ◦ γ]′, 0] = ν[f ′ ◦ γ, 0] + ν[γ′, 0].

Proof. The lemma follows from the following calculation.

ν[[f ◦ γ]′, 0] =
1

2πi

∫

[f◦γ]′

dz

z

=
1

2πi

∫ 1

0

d([f ◦ γ]′)

[f ◦ γ]′
dt

=
1

2πi

∫ 1

0

d(f ′(γ(t))γ′(t))

f ′(γ(t))γ′(t)
dt

=
1

2πi

∫ 1

0

f ′′(γ(t))γ′2(t) + f ′(γ(t))γ′′(t)

f ′(γ(t))γ′(t)
dt

=
1

2πi

∫ 1

0

f ′′(γ(t))γ′(t)

f ′(γ(t))
dt +

1

2πi

∫ 1

0

γ′′(t)

γ′(t)
dt

=
1

2πi

∫

f ′(γ)

dz

z
+

1

2πi

∫

γ′

dz

z

This last line is exactly ν[f ′ ◦ γ, 0] + ν[γ′, 0]. �

Theorem 5.10. Suppose f : C → C is a holomorphic function and γ is a simple closed
curve that winds once around {p1, . . . , pN} where f ′(pi) = 0 are roots of the derivative. Then
the total curvature of the image curve is K(f(γ)) = ±(2πN + 2π).
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(a) C
.5, C.66874, C.8, Roots of f, f ′ (b) f(C

.5), f(C
.66874), f(C

.8)

Figure 2: Roots of z5 + z, 5z4 + 1

Proof. By Theorem 5.7 the total curvature of the image curve f ◦γ is just K(f(γ)) = 2πν[[f ◦
γ]′, 0]. By Lemma 5.9 this is just 2π times the sum of the winding numbers ν[f ′◦γ, 0]+ν[γ′, 0].
By the Argument Principle (Theorem 3.11) ν[f ′ ◦ γ, 0] is just the number of roots of f ′ that
γ encloses. By hypothesis, this is N . If γ is positively-oriented and thus winds around the
roots in a counter-clockwise manner then K(f(γ)) = 2πN +2π, and this quantity is negative
if γ is negatively-oriented and f ′ is orientation-preserving. �

Remark 5.11. We would like to generalize the above result to include more general curves and
their images, but the Argument Principle, as stated, only provides information about simple
closed curves. There should be no problems with curves that have self-intersections and
wind around roots of the derivative multiple times. Regardless, the above result illustrates
the most important features of the theory. In particular, it should be noted that the above
result works for any holomorphic function. Polynomials happen to always be holomorphic
functions and from the previous discussion regarding the Fundamental Theorem of Algebra,
they are guaranteed to have roots.

6. Numerical Investigations

It should be noted that when the problem of curvature of polynomial images of circles
is first treated computationally, it is easy to be misled. It is easy to show that a cir-
cle, whose total curvature is 2π, when mapped via a degree n polynomial such as zn,
has total curvature of n2π. In particular, for circles large enough this is true for any
degree n polynomial. One might mistakenly conjecture a different version of Theorem
5.10 that says K(f(γ)) = n2π. However, in Figure 2, we consider the mapping f(z) =
z5 + z and various circles in relation to the roots of the function and its derivative. The
roots of f are simply

{

0,−(−1)1/4, (−1)1/4,−(−1)3/4, (−1)3/4
}

and the roots of f ′ occur at
{

−
(

−1
5

)1/4
,
(

−1
5

)1/4
,− (−1)3/4

51/4
, (−1)3/4

51/4

}

, which all have norm approximately equal to 0.66874.

The total curvature of the curves f(C.5), f(C.66874), f(C.8) are, respectively K = {2π, 6π, 10π}.
The value for K(f(C.66874)) = 6π can in some ways be considered a numerical fiction since
the curvature at these cusp points is undefined. Mathematica consistently assigns kπ to the
curvature for each cusp, where k is the order of the zero of the derivative.
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(a) Two Roots of f : Domain (b) Two Roots of f : Image

(c) Two Roots of f, f ′: Domain (d) Two Roots of f, f ′: Image

(e) Two Roots of f, f ′: Domain (f) Two Roots of f, f ′: Image

Figure 3: Roots of (z − 2)3 − 1 and its Derivative
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As a final experiment, we consider winding around roots of the function without winding
around roots of the derivative. The Argument Principle tells us that we must wind around
the origin once for every root of the function, but it is not clear how we wind around
the origin additional times without without effecting the total curvature. In Figure 3, we
consider such a situation. If one considers the function f(z) = (z − 2)3 − 1, which has roots
{

3, 1
2

(

3 − i
√

3
)

, 1
2

(

3 + i
√

3
)}

, and whose derivative has a root of order 2 at 2, we are able
to selectively wind around roots using ellipses.

The winding number about the origin of the image curve in Figure 3b is indeed two, but
the curve performs a twist near the center of the image so the rotation index of the tangent
vector is one. Numerical calculation confirms that the total curvature is still 2π for Figure
3b. The total curvature for Figure 3d is 2π + 2π = 4π, reflecting that this is a cusp of order
two. Finally, the total curvature for Figure 3f is 2π + 2 × 2π = 6π, reflecting the result of
Theorem 5.10.

7. Division of Labor

Justin Curry - Introduction, Complex Analysis Revisited, Curvature
Michael Forbes - Phenomenology of p(CR), The Fundamental Theorem of Algebra
Matthew Gordon - Editing
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