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Abstract. In this paper, we discuss colorability of knot-projections. In particular, we
prove that colorability is a knot-invariant over finite abelian groups and that we can use
this to show that knots are inequivalent. We also demonstrate that we retain much of our
ability to distinguish knots even if we only color over the prime fields.

1. Introduction

A knot is a smooth embedding of a circle into R3. For the purposes of this paper, a knot
can simply be thought of as a piece of string that has been wound around itself and then
had its ends joined together. Knots are equivalent if they can be deformed into each other
without tearing. More formally, two knots are defined to be equivalent if there exists an
orientation-preserving homeomorphism between them.

It is convenient to project knots onto R2 to make them easier to work with. We can obtain
a knot-projection of any knot by mapping each point (x, y, z) in the knot to the point (x, y)
in the knot-projection.

To extend the notion of knot equivalence to R2, Kurt Reidemeister proposed three trans-
formations on knot-projections which are known as the Reidemeister moves. Reidemeister
was able to prove that knot-projections of equivalent knots are related by a finite sequence

(a) (b)

Figure 1: Reidemeister move I [2]

(a) (b)

Figure 2: Reidemeister move III [2]
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(a) (b)

Figure 3: Reidemeister move III [2]

of these three moves. We can thus repeatedly apply the Reidemeister moves to enumerate
all knot-projections that are equivalent to an initial knot-projection.

Figure 4 demonstrates the process of using Reidemeister moves to move between equivalent
knot-projections. In this case, we begin with the unknot and apply the first Reidemeister
move twice.

Figure 4: Applying Reidemeister Moves To The Unknot [3]

While it might seem that any knot-projection that is equivalent to the unknot will be
quite simple, Figure 5 shows that this is not the case.

Figure 5: A Complex Unknot [3]

The Reidemeister moves give a way to prove that two knots are equivalent but they do not
give a way to prove that two knots are inequivalent. For this task, we utilize knot-invariants.
A knot-invariant is a property of a knot that is shared by all equivalent knots. Knot-
invariants do not necessarily take different values for knots that are inequivalent, however,
so we cannot use knot-invariants to prove that knots are equivalent.
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In the remainder of the paper, we prove that colorability is a knot-invariant over nite
abelian groups and that we can use this to show that knots are inequivalent. In Section 2,
we introduce colorability and illustrate how to use 3-colorability to prove that two knots
are inequivalent. In Section 3, we show how we can represent knot-projections as systems of
homogeneous linear equations where colorings of the knot-projections correspond to solutions
to the systems of equations. We also demonstrate the limits of using 3-colorability in proving
that knots are inequivalent. In Section 4, we introduce the connected sum operation as a tool
for generating new knots and explore the effect that the operation has on the linear systems
we have developed. In Section 5, we generalize coloring to groups, present the proof that
it is a knot-invariant for finite abelian groups, and show that this generalized formulation
of coloring allows us to overcome the limitations of 3-colorability. Finally, in Section 6, we
demonstrate that we retain much of our ability to distinguish knots even if we only color
over the prime fields.

2. Colorability

In Section 1, we discussed how we could use a knot-invariant to prove that two knots
are inequivalent. In this paper, we examine how to use colorability as our knot-invariant.
Colorability is shown to be a knot-invariant in Corollary 5.8, so we use this result without
justification for now.

Before defining colorability formally, let us introduce some basic terminology:

Definition 2.1. A crossing occurs in a knot-projection when the points p1 = (x, y, z1) and
p2 = (x, y, z2) in the knot, where z1 6= z2, map to the same point (x, y) in the knot-projection.

We call p1 the over-crossing and p2 the under-crossing where z1 > z2. It is not necessary
to deal with cases where more than two points in the knot have the same (x, y) because
infinitesimal movements can be used to move the knot so that this is not the case.

Definition 2.2. In a knot-projection K, an arc is a maximal path not containing any
under-crossings. The set of arcs in K is denoted A(K).

Figure 6: A Crossing

Three (not necessarily distinct) arcs meet at each crossing in a knot-projection. There
is the arc that passes through the over-crossing as well as the arc that is split into two
arcs by the under-crossing. For a given crossing, we call the arc that passes through the
over-crossing an over-arc and the two arcs terminating at the under-crossing under-arcs.
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Figure 6 shows our convention for drawing crossings, which has been chosen to emphasize
that the under-crossing gives us an arc on either side of the over-arc.

Definition 2.3. A coloring of a knot-projection K is a function that assigns one of a set
of colors to each member of A(K) such that the three arcs of the knot-projection that meet
at each crossing in K either all have the same assignment or all have different assignments.

We refer to this constraint on the arcs that meet at a crossing as the crossing condition.
A trivial coloring of a knot-projection is a coloring where all arcs take the same color.
When we’re coloring over a set of n colors, this means there will be n trivial colorings. If
there is also a non-trivial coloring, then we call that knot-projection n-colorable.

Figure 7: Labeled Trefoil Knot [2]

We can now use the notion of 3-colorability to prove that two knots are inequivalent.
Consider the unknot, which is the knot we started with in Figure 4, and the trefoil knot,
which is pictured in Figure 7. The unknot can only have trivial colorings because there is
only one arc in the entire knot for us to assign a color. The trefoil knot, however, has three
arcs and three crossings. If we let each of the arcs be a different color, we find that the
crossing conditions are met for each of the crossings. Therefore the trefoil knot is 3-colorable
and the unknot is not 3-colorable. This means that these two knots are inequivalent since
coloring is a knot-invariant.

3. Representing Knot Projections with Linear Systems

In this section, we show how the coloring of a knot with three colors can be reduced to
solving a system of linear equations over a field of three elements, with the identification
0 = red, 1 = green, and 2 = blue. By using a numerical assignment we can reduce the
crossing conditions for a valid coloring into a system of equations. We thereby turn a
combinatorial question of coloring into a problem of linear algebra.

Proposition 3.1. Let K be a knot-projection. Enumerate the arcs {a1, . . . , an} and the
crossings {c1, . . . , ck}. At each crossing c` the crossing condition requires that: (1) ai = aj =
ak or (2) ai 6= aj 6= ak and ai 6= ak. These reduce to the single equation

(3.2) ai + aj + ak ≡ 0 mod 3 = 0Z3 .

Proof. One can see that condition (1) obeys equation (3.2) since ai + aj + ak = 3ai = 0Z3 .
Similarly, (2) gives rise to permutations of the equation ai + aj + ak = 0 + 1 + 2 = 0Z3 . It
can be verified that all other possible assignments that violate the definition of a coloring
fails equation (3.2) as well. �
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For now we will assume that 0 = 0Z3 . Proposition 3.1 gives a general recipe for associating
to any knot projection a linear system of equations. The following result tells us this is
always a square system.

Lemma 3.3. The number of arcs equals the number of crossings, so n = k in Proposition
3.1.

Proof. By following a knot in one direction in three dimensions we give it an orientation.
This orientation of the knot induces an orientation on the knot-projection. At each crossing
there is exactly one arc that terminates. We create a bijection by assigning every arc that
ends at a crossing to that crossing. �

Definition 3.4. Let K be a knot-projection with crossings c1, . . . , cn and arcs a1, . . . , an.
Suppose that at each c` an equation of form (3.2) holds. The coloring matrix of K is an
n×n matrix MK over Z3 defined by

∑
1≤`≤n(e`,i(`) +e`,j(`) +e`,k(`)), with er,s the matrix unit.

Proposition 3.5. For a knot-projection K with n arcs, let ~x ∈ Zn
3 , then ~x is a coloring if

and only if ~x ∈ ker(MK) where MK is the coloring matrix.

Proof. By construction, a coloring is a solution to the homogeneous system of equations in
Proposition 3.1. This is equivalent to finding vectors in the null-space of the associated
coloring matrix MK . �

Corollary 3.6. A knot-projection K is 3-colorable if dim[ker(MK)] > 1.

Proof. The trivial coloring corresponds to any vector in the span of ~x = (1, . . . , 1)T with
length n = |A(K)|. Any non-trivial coloring is not in the span of this vector but by the
above proposition lies in the kernel. �

We will show later in the paper that the dimension of the kernel is a knot-invariant. By
applying Corollary 3.6 we will establish that 3-colorability is a knot-invariant.

Figure 8: The Trefoil Knot. Edited from Wolfram’s Mathworld.

Example 3.7. We begin with our first knot that presents a non-trivial coloring – the trefoil
knot. Figure 8, shows that the arcs have been labeled {a1, a2, a3} and the three crossings
labeled {c1, c2, c3}. Proposition 3.1 requires that at each crossing ci the equation a1+a2+a3 =
0 must hold. We can write this more compactly with the coloring matrix as

(3.8) MK~x =

1 1 1
1 1 1
1 1 1

a1

a2

a3

 = ~0,
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where the ith row of MK corresponds to the crossing condition at ci. We observe that
ker(MK) has the following basis: ~x1 = (1, 1, 1)T and ~x2 = (0, 1, 2)T . ~x1 corresponds to the
trivial coloring, and ~x2 corresponds to a non-trivial coloring. It is important to notice that
since we are working over Z3 the span of ~x1 includes all possible choices for the trivial coloring.
Similarly, span(~x1, ~x2)− span(~x1) = {the set of non-trivial colorings} and we account for the
different ways in which the trefoil might be colored with three colors.

Figure 9: The 5-Foil. Edited from Wolfram’s Mathworld.

Example 3.9. A slightly more complicated example illustrates that the notion of 3-colorability
fails to distinguish certain inequivalent knots. Figure 9 depicts the projection of the 5-foil
(or more commonly known as Solomon’s seal knot). The recipe of Proposition 3.1 provides
the following coloring matrix:

(3.10) MK5~x =


1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1



a1

a2

a3

a4

a5

 = ~0.

Let ~ci denote the ith row ofMK5 (we make this choice to emphasize that each row corresponds
to the arcs at a specific crossing). It is clear that ~c2,~c3,~c4 are all independent. We want to
argue by contradiction that ~c5 is independent as well. If ~c5 ∈ span(~c2,~c3,~c4) then ~c2 and ~c4
must each have 1 as their coefficients since the first and fifth entry in ~c5 is 1. Similarly the
third entry of ~c5 is 0, which requires that the coefficient of ~c3 is also 1, but this would imply
that c22 + c32 + c42 = 1 + 1 + 0 = 2 6= c52 where ci2 denotes the 2nd entry of the ith row.
Thus ~c5 /∈ span(~c2,~c3,~c4). The Rank-Nullity Theorem states that

dim[Im(MK)] + dim[Ker(MK)] = n,

where MK is any n× n coloring matrix. Since {~c2,~c3,~c4,~c5} are independent vectors in the
image of M5 we have that dimker(M5) = 5 − 4 = 1 and thus by Corollary 3.6, the 5-foil is
not 3-colorable.
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4. Coloring the Connected Sum

Given two knots K1 and K2, we can form a new knot K = K1#K2 known as the con-
nected sum of K1 and K2. The connected sum is constructed by making a cut in the both
knots and then gluing the ends of K1 with K2. By projecting onto the plane, we can preform
the connected sum on two knot-projections. The connected sum operation for two trefoil
knots is illustrated in Figure 10.

Figure 10: Connected Sum of Two Trefoil Knots. Edited from Wolfram’s Mathworld.

Example 4.1. Following the same procedure outlined in Proposition 3.1, we create the
associated coloring matrix for the connected sum of two trefoils depicted in Figure 10.

(4.2) MK~x =


1 1 1 0 0 0
1 1 1 0 0 0
0 0 1 1 1 0
0 0 0 1 1 1
0 0 0 1 1 1
1 1 0 0 0 1




a1

a2

a3

a4

a5

a6

 = ~0.

Once again letting ~ci denote the ith row, we see that {~c1,~c3,~c4} are all independent. By the
Rank-Nullity Theorem dim[ker(MK)] = 6 − 3 = 3. By inspection, we find a basis for the
kernel:

~x1 = (1, 1, 1, 1, 1, 1)T

~x2 = (0, 1, 2, 0, 1, 2)T

~x3 = (1, 1, 1, 2, 0, 1)T

We see that ~x1 corresponds to the trivial coloring and that ~x2, ~x3 correspond to two linearly
independent non-trivial colorings. We can interpret ~x2 as giving K1 and K2 a non-trivial
coloring and then gluing arcs that agree on a given color. Similarly, ~x3 corresponds to
giving K2 a non-trivial coloring and then coloring K1 so that its entire color agrees with the
attaching arc from K2.

The fact that the connected sum of two trefoils has dim[Ker(MK)] = 3 will be very
important once we establish that the dimension of the kernel and thus the number of colorings
is a knot invariant. We can then distinguish the connected sum of two trefoils from a trefoil
itself. By considering the dimension of the kernel of the connected sum, we can prove when
the connected sum is inequivalent to one of its constituent knots.
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Proposition 4.3. Fix two knot projections K1 and K2 and their associated coloring matrices.
Suppose dim[Ker(MKi

)] = Ci for i = 1, 2, then CK1#K2 = dim[Ker(MK1#K2)] ≥ C1 +C2− 1.

Proof. Given any coloring of K1 we can choose a trivial coloring of K2 so that the color of the
attaching arcs agree. This establishes that the connected sum admits at least C1 independent
colorings. Similarly, given any coloring of K2 we can fix a trivial coloring of K1 so that the
arcs agree in color. Since we have already counted the trivial coloring for the entire knot
once in C1 we must subtract one from C2 to avoid double counting. Since any trivial coloring
is independent of a non-trivial coloring, this process will only count independent colorings
and thus we have established a lower bound on the dimension of the kernel. �

Remark 4.4. Suppose that K1 and K2 are two knot projections. Suppose that K2 is 3-
colorable, then C2 ≥ 2. Thus CK1#K2 ≥ C1 + 2 − 1 = C1 + 1 > C1. We then have that K1

and K1#K2 must differ. In particular, since the trefoil is 3-colorable and by applying the
connected sum operation repeatedly, we obtain an infinite number of inequivalent knots.

By associating knot projections with matrices we can use the connected sum operation to
induce an operation on matrices without making reference to their associated knots. This
operation is embodied in the following Theorem.

Theorem 4.5. If MK1 is an n× n coloring matrix and MK2 is a k × k, both constructed in
a suitable fashion, then the connected sum operation corresponds to the following operation
on the augmented (n+ k)× (n+ k) coloring matrix:

[
MK1 On×k
Ok×n MK2

]
=


M ′

K1
On−1×k

1 ∗ 1 0 · · · 0
Ok−1×n M ′

K2

0 · · · 0 1 ∗′ 1

 →


M ′

K1
On−1×k

0 · · · 1 1 ∗′ 0
Ok−1×n M ′

K2

1 ∗ 0 0 · · · 1

 .
Where M ′ refers to the restriction of M to its first n or k rows respectively.

Proof. In order for the matrices to be ‘suitable’ we require that the matrices MK1 and MK2

be constructed in the following nice way. Give each knot projection an orientation and label
each arc so that at each crossing the next arc is the under-arc that follows the orientation.
Label each crossing so that arc ai terminates at ci. Once we have constructed the matrices
in this manner, we must glue the final arcs an of K1 and bk of K2 so that the orientations
on both knots agree. Gluing that respects the orientations then provides the assignment
an+i := bi for 1 ≤ i ≤ k in the new connected sum knot. We further require the two knots be
joined at a point so that an does not participate in any other arcs before terminating at cn
and that bk not participate in any other arcs before ending at c′k. By gluing in this fashion,
we preserve all the relations between arcs in the first n − 1 crossings in K1 and the first
k − 1 crossings in K2. This means that only the nth and (n+ k)th rows are changed in the
associated matrix. Suppose before the connected sum operation, an terminated at cn with
over-arc aj and following under-arc a1 (by construction). Similarly, let bk end at over-arc bj′
and under-arc b1. After gluing, an ends at over-arc bj′ =: an+j′ and under-arc b1 =: an+1,
while bk =: an+k ends at over-arc aj and under-arc a1. �

5. Generalizations of Coloring to Groups

Previous sections explored coloring knot-projections in a combinatorial way when coloring
over sets such as {red,green, blue} and also within a linear algebra framework when coloring
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over the field Z3. We claimed that over this field, the number of colorings of a knot-projection
is a knot-invariant. This invariant distinguishes the trefoil knot from the unknot but fails to
distinguish the 5-foil knot from the unknot. In this section, coloring is generalized to groups
and the invariance of coloring over certain groups shows the 5-foil differs from the unknot.

Defining coloring over arbitrary sets can be done in several ways. A natural method
returns to the combinatorial definition of the crossing condition: the colors of the arcs in
any crossing must all be different or must all be the same. Axioms can be developed to give
this relation knot-invariance. When the set of colors has a group structure, these axioms
give a notion of coloring over arbitrary groups. We will not take this approach as it seems
too general for some results in Section 6, namely Lemma 6.1 and its consequences such as
Theorem 6.2.

We avoid the axiomatic approach to avoid non-abelian groups and so work exclusively
with abelian groups. The main motivation for abelian groups is to allow the equations to
respect the symmetry of the under-arcs at any crossing. Our generalization is in the spirit
of the linear systems of Section 3. That framework uses equations with integer coefficients
and such equations can be naturally interpreted over an abelian group structure as equations
with repeated addition.

With the abelian group structure, a new linear equation may be needed to define the
crossing condition. For a crossing with over-arc ai and under-arcs aj,ak, the condition could
be as general as nf(ai) + mf(aj) + kf(ak) = 0 for n,m, l ∈ Z and f a map from the arcs
of the knot-projection to the elements of an abelian group. However, the symmetry of the
under-arcs requires that m = l. For simplicity, we take m = l = 1. n is determined by
the requirement that the crossing condition enforces knot-invariance of colorings over the
Reidemeister moves. In the first Reidemeister move from Figure 1, it must be that Figure 1b
can replace Figure 1a seamlessly, meaning that in Figure 1a f(a1) = f(a2). Combining with
the crossing condition nf(a1) + f(a1) + f(a2) = 0 determines that n = −2. Therefore, the
new crossing equation is −2f(ai) + f(aj) + f(ak) = 0.

We can now state some basic definitions and results when colorings are generalized to
abelian groups.

Definition 5.1. A coloring of a knot-projection K over an abelian group G is a function
f : A(K) → G such that, at a crossing of over-arc ai ∈ A(K) and under-arcs aj, ak ∈ A(K),
2f(ai) = f(aj) + f(ak). The set of colorings is denoted CG(K).

Remark 5.2. The notions of a trivial coloring and the coloring matrix MK of a knot-
projection can be inherited from previous sections with the natural re-definitions.

Remark 5.3. Over Z3, the generalized notion of coloring has the crossing equation f(ai) +
f(aj) + f(ak) = 0 as −2 = 1. This corresponds with the original formulation of coloring.

Definition 5.4. For an abelian group G, a knot-projection K is G-colorable if it has a
non-trivial coloring over G.

The following lemma is a generalization of the earlier Lemma 3.6. It assumes a finite
abelian group as otherwise it would not make sense.

Lemma 5.5. For a finite abelian group G, a knot-projection K is G-colorable if and only if
|CG(K)| > |G|.
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Proof. There is a trivial coloring for each element of G so this lemma follows naturally from
the definition.

�

With these basic ideas we can now prove the main theorem relating the colorings of
equivalent knot-projections which establishes the invariance of coloring.

Theorem 5.6. Let G be an abelian group. For two equivalent knot projections K and K ′,
there is a bijection between their colorings over G.

Proof. As K and K ′ are equivalent, there is a number n ∈ N of Reidemeister moves to take
K to K ′. These moves create a sequence of intermediate knot projections, K = K0 ↔
K1 ↔ · · · ↔ Kn = K ′, such that each Ki and Ki+1 only differ by one Reidemeister move.
By establishing bijections hi : CG(Ki) ↔ CG(Ki+1), the theorem will be proven as h =
hn−1 ◦ hn−2 ◦ · · · ◦ h0 will be the desired bijection.

Claim. If knot projections K and K ′ differ by exactly one Reidemeister move, then there is
a bijection between their colorings, CG(K) and CG(K ′).

Proof. The proof idea is to establish an invertible injection between the two sets. For each
direction of each Reidemeister move, an injective map will take the colorings on K to the
colorings on K ′. As the moves are invertible, the map will be also. This will establish the
bijection.

For the local region along a Reidemeister move, denote H to be the restriction of K to
the region and likewise for H ′ with relation to K ′. Denote K− to be the common structure
of K and K ′. K− is not a knot, but will be called a partial knot. A coloring on a partial
knot will have the same requirements at any crossing, but for where the partial knot “ends”
there are no requirements.

For each Reidemeister move, a coloring on K will restrict to a coloring on K−. It is enough
to show that there is exactly one way to extend the coloring on K− to a coloring in K ′. We
avoid the full analysis of all six cases and instead mention the main ideas throughout the
cases and apply them directly to two such cases.

To extend a coloring on K− to a coloring on K ′ it must be that the “ends” of K− connect
to H ′ in the same way they connect to H. Thus, the “external” arcs (the ones that connect
to K−) of H ′ and H must agree in color. The crossing conditions of H show that such an
assignment of colors to H ′ is well-defined. After this assignment occurs, it must be that the
rest of the coloring in H ′ is uniquely determined. The crossing conditions of H and H ′ are
used to prove this. By showing the coloring on H ′ is unique, the map is injective. To show
that these ideas work, we present two of the six cases in detail.

Take the case of the first Reidemeister move, where we take Figure 1a to Figure 1b. The
new crossing condition was derived explicitly to show this case preserved colorings. We do
not explore it further and instead turn to a more interesting case.

Figure 3 shows the third Reidemeister move. Let the ai’s and the bi’s denote the colors
of the arcs instead of the arcs themselves. The arcs a6 and b6 are internal as they do not
connect to K−, while the rest are external. Consider the direction taking H, the partial
knot in Figure 3a, to H ′, the partial knot in Figure 3b. Applying the first idea from above
shows that extending K− to K ′ requires that bi = ai for 1 ≤ i ≤ 5 for the extension to
be well-defined. The crossing conditions on H and H ′ are expressed in the following linear
systems
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MH =

1 0 −2 0 0 1
0 1 −2 0 1 0
0 0 0 1 −2 1

 MH′ =

1 −2 0 0 0 1
0 1 −2 0 1 0
0 0 −2 1 0 1

(5.7)

As K is a coloring, ~a = (a1, . . . , a6)
T must have MH~a = ~0, and similarly, ~b = (b1, . . . , b6)

T

has MH′~b = ~0 for any valid coloring on K ′. As b1, . . . , b5 are uniquely determined so far, it

remains to show that b6 is uniquely determined by the requirement MH′~b = ~0. The equation
b6 = b4 − 2b3 = b1 − 2b2 defines the restrictions on b6 in H ′. As bi = ai for 0 ≤ i ≤ 5,
it suffices to show the equation a1 − 2a2 + 2a3 − a4 = 0 holds to conclude b6 is uniquely
determined. This is equivalent to saying the vector

[
1 −2 2 −1 0 0

]
is in the rowspace

of MH . The linear combination
[
1 −2 −1

]
MH shows the vector is in the rowspace and

so b6 is uniquely determined. Thus a coloring on K− derived from K can be extended to a
coloring K ′ in exactly one way.

The other cases are similarly shown using the ideas from above.
�

The proof of the claim establishes that each pair of knot-projections that are one Rei-
demeister move apart have a bijection between their colorings. As mentioned above, this
gives a composition of bijections to establish the bijection between the colorings of any two
equivalent knot-projections.

�

Applying Theorem 5.6 to finite abelian groups gives the following corollary which states
the knot-invariance of coloring.

Corollary 5.8. Fix a finite abelian group G. Then the number of colorings is a knot-
invariant. G-colorability is also an knot-invariant.

Along with Section 6, this corollary is one of the main results of the paper. As Z3 is a
finite abelian group the claims from Section 3 that the knot-invariance of the dimension of
the colorings are now justified.

Further, we can apply this generalization to yield new results. Consider the 5-foil knot of
Figure 9. Coloring over Z3 failed to show that the 5-foil differs from the unknot. However,

if we color over Z5 it can be verified that there is the non-trivial coloring
[
4 3 2 1 0

]T
.

As the unknot never has a non-trivial coloring, this proves that the 5-foil differs from the
unknot. Returning to the Z3 case shows the 5-foil also differs from the trefoil knot and the
connected-sum of two trefoil knots.

6. The Power of Prime Fields

In the previous section the idea of coloring was expanded to any abelian group. We saw
that the number of colorings is a knot-invariant for finite abelian groups. However, there are
many different types of abelian groups with a variety of different structures. The prime fields
Zp, for p prime, are easy to compute with when using vector spaces, as seen in Section 3 with
the specific case of Z3. In this section we show that the prime fields are in some sense the
only groups that we need to color over so the results of this paper are more easily applied
to actual knots.
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To begin, we need that the set of colorings CG(K) has more structure than just a set. In
particular, we have the following lemma.

Lemma 6.1. For a knot-projection K with n arcs and an abelian group G, CG(K) is isomor-
phic to a subgroup of the product group Gn. Furthermore, CG(K) is the kernel of the group
homomorphism ϕ : Gn → Gn defined by ϕ(~g) = MK~g, where MK is the coloring matrix of
K.

Proof. For the arcs A(K) = {a1, . . . , an} we can define C = {(f(a1), . . . , f(an)) ∈ Gn : f ∈
CG(K)} ⊆ Gn. C is a group as the crossing conditions are linear. Specifically, the identity
axiom holds as the zero coloring is in CG(K). Inverses exist because for any crossing with
over-arc ai and under-arcs aj and ak, a coloring f ∈ CG(K) has 2f(ai) = f(aj) + f(ak)
and so implies 2f(ai)

−1 = −2f(ai) = −f(aj) − f(ak) = f(aj)
−1 + f(ak)

−1 and thus −f ∈
CG(K). If f, h ∈ CG(K) then for a crossing with over-arc ai and under-arcs aj and ak,
2(f(ai) + h(ai)) = (f(aj) + h(aj)) + (f(ak) + h(ak)). Thus f + h ∈ CG(K). Associativity is
inherited, so we then have that C is a subgroup of Gn.

The second part of the claim follows from the definition of the coloring matrix and its
relation to the set of colorings. The notion MK~g is well-defined as MK is an integer matrix.

�

The addition structure on the set of colorings gives the power to prove the next result,
which is the inspiration for this entire section.

Theorem 6.2. For a knot-projection K with n arcs and a finite abelian group G with sub-
group H, |CG(K)| ≤ |CH(K)| · |CG/H(K)|.

Proof. Consider the canonical homomorphism ϕ : G → G/H. By Lemma 6.1, we can
then use ϕ to construct the canonical group homomorphism π : CG → (G/H)n. Notice

kerπ = CG ∩Hn = CH . By construction of Mk, any c ∈ CG(K) has MKc = ~0Gn . As linear

equations commute over homomorphisms, MKπ(c) = π(MKc) = π(~0Gn) = ~0(G/H)n . Thus,
π(c) ∈ (G/H)n satisfies the crossing conditions so π(c) ∈ CG/H(K). Thus im π ⊆ CG/H(K).
The claim follows from |CG(K)| = | kerπ| · | im π| ≤ |CH(K)| · |CG/H(K)|.

�

This theorem allows the knot-invariant property of G-colorability to be related to sub-
groups.

Corollary 6.3. For a knot-projection K and a finite abelian group G with subgroup H, K
is G-colorable if and only if it is H-colorable or it is G/H-colorable.

Proof. By Theorem 6.2, |CG(K)| ≤ |CH(K)| · |CG/H(K)|. As |G| = |H| · |G/H|, it must
that |CG(K)| > |G| if and only if at least of |H| > |CH(K)| or |G/H| > |CG/H(K)|. By
Lemma 5.5, K is G-colorable if and only if |CG(K)| > |G|. Combining these statements
gives the corollary.

�

Recursively applying Corollary 6.3 gives the main corollary relating G-colorability to Zp-
colorability, thus showing the power of prime fields in this notion of coloring.

Corollary 6.4. For a finite abelian group G, a knot-projection K is G-colorable if and only
if there is a prime p where K is Zp-colorable and p divides |G|.
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Corollary 5.8 establishes that G-colorability is a knot-invariant. Therefore, Corollary 6.4
shows that two knots can be differentiated by the property of G-colorability if and only
if they can be differentiated by Zp-colorability for some p. As Section 3 can be naturally
generalized to work with any field Zp, this gives a framework for differentiating knots that
can be done algorithmically as vector spaces are well-understood by computers.

A natural question to ask is whether Theorem 6.2 can be strengthened so that equality
always holds or holds for some class of interesting groups. If equality were to hold then
the number of colorings of a knot over a group G is fully determined by the colorings over
smaller groups, and therefore by the groups Zp. Therefore, when attempting to distinguish
knots via the number of colorings, as opposed to just G-colorability, the groups Zp are the
only groups that need to be examined. The next result shows that equality does hold for
the groups Zn.

Theorem 6.5. For a knot-projection K with n arcs and group Zrs, |CZrs(K)| = |CZr(K)| ·
|CZs(K)|.

Proof. Let MK be the coloring matrix of K. Denote rZn
rs = {r~x : ~x ∈ Zn

rs} and MKZn
rs =

{M~x : ~x ∈ Zn
rs}. As MK is a n × n matrix we get that both rZn

rs and MKZn
rs are both

subgroups of Zn
rs. Define MKrZn

rs analogously. Consider the following commutative diagram

(6.6)

Zn
rs

ϕ1(~x)=r~x−−−−−→ rZn
rs

ψ2(~x)=MK~x

y yψ1(~x)=MK~x

MKZn
rs

ϕ2(~x)=r~x−−−−−→ MKrZn
rs

By inspection, we see that kerϕ1 = sZn
rs, kerψ2 = CZrs , kerψ1 = CrZrs . It is clear that

kerϕ2 = (MKZn
rs) ∩ (sZn

rs), but a stronger statement is needed. To get there we prove the
following claim, which rests on the First, Second and Third Group Isomorphism Theorems [1].

Claim. MKrZn
rs is isomorphic to Zn

rs/(CZrs + sZn
rs).

Proof. We analyze the homomorphism π = ψ1ϕ1 = ϕ2ψ2 which has π : Zn
rs → MKrZn

rs. For

~x ∈ Zn
rs, if π(~x) = ~0MKrZn

rs
then MKr~x = ~0Zn

rs
. Thus r~x = ~c ∈ CZrs . Thus r divides the

entries of ~c so take ~y = ~c/r and ~z = ~x − ~y. As r(~x − ~y) = ~0. ~z ∈ sZn
rs and ~x = ~y + ~z.

Therefore kerπ ⊆ CZrs + sZn
rs. The other direction can run this argument in reverse, so

kerπ = CZrs + sZn
rs. As π is surjective by construction, the First Isomorphism Theorem

gives the claim.
�

There is a natural homomorphism between Zn
rs/CZrs and Zn

rs/(CZrs + sZn
rs) with kernel

(CZrs +sZn
rs)/CZrs as given by the Third Isomorphism Theorem. By the Second Isomorphism

Theorem, (CZrs + sZn
rs)/CZrs is isomorphic to sZn

rs/(CZrs ∩ sZn
rs). But CZrs ∩ sZn

rs = CsZrs

and so the kernel of the map between Zn
rs/CZrs and Zn

rs/(CZrs + sZn
rs) is of order |CsZrs |.

Thus |Zn
rs/CZrs | = |CsZrs | · |Zn

rs/(CZrs + sZn
rs)|. Applying the First Isomorphism Theo-

rem gives MKZn
rs
∼= Zn

rs/CZrs and so |MKZn
rs| = |sZn

rs/CsZrs | · |rMKZn
rs|. Thus | kerϕ2| =

|Zn
rs/CsZrs | = |sZn

rs|/|CsZrs |. This is the stronger statement we needed.
We can read off the diagram that | kerψ1| · | kerϕ1| = | kerψ2| · | kerϕ2| or, that |CrZrs | ·

|sZn
rs| = |sZn

rs|/|CsZrs | · |CZrs |. As rZrs
∼= Zs and sZrs

∼= Zr this gives the theorem.
13



�

Just as Theorem 6.2 gives Corollary 6.3 so does Theorem 6.5 give the following corollary
asserting a more powerful statement about the ability of prime fields to differentiate knots.

Corollary 6.7. Two knot-projections K and K ′ can be differentiated by counting the number
of colorings over Zn if and only if they can be differentiated by counting the number of
colorings over Zp for some prime p dividing n.

This last corollary is very informative and it would be convenient if it held for all finite
abelian groups G. We are not sure. The only property used of Zn was that for any subgroup
H of Zn, Zn/H is a subgroup of Zn. Proving the theorem for any group with such a property
seems notationally difficult, so we leave it with the following conjecture.

Conjecture 6.8. Fix a knot-projection K. For a group G with subgroup H, if G/H is
isomorphic to a subgroup of G then |CG(K)| = |CH(K)| · |CG/H(K)|.

7. Further Directions

We showed that the number of colorings of a knot over a finite abelian group is a knot-
invariant. For full generality, we would like to take this invariant in two directions: first to
infinite fields where dimension would be the knot-invariant, and second to arbitrary finite
groups. These generalizations would be enhanced by stronger theorems, such as proving
that the bijection of Theorem 5.6 is actually a group isomorphism. Section 6 seems to break
down on non-abelian groups and ideally this relationship could be better explored. Further,
Conjecture 6.8 needs to be proven or refuted. Aside from further generalizations of our
results, another direction would be to apply those results to distinguish other examples of
inequivalent knots, as well as to explore instances when our general notion of coloring over
abelian groups, or over prime fields, fails to distinguish inequivalent knots.

8. Division Of Labor

Matthew: Abstract, Introduction, Colorability
Justin: Representing Knot Projections with Linear Systems, Coloring the Connected Sum
Michael: Generalizations of Coloring to Groups, The Power of Prime Fields
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